Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
PLoS Pathog ; 20(4): e1012133, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662794

RESUMEN

The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.


Asunto(s)
Vesículas Extracelulares , Picornaviridae , Proteínas Virales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virología , Humanos , Picornaviridae/metabolismo , Picornaviridae/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Animales , eIF-2 Quinasa/metabolismo , Liberación del Virus/fisiología , Ratones , Theilovirus/metabolismo , Infecciones por Cardiovirus/virología , Infecciones por Cardiovirus/metabolismo , Virus de la Encefalomiocarditis/metabolismo , Virus de la Encefalomiocarditis/fisiología
2.
J Virol ; 97(10): e0104523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37811994

RESUMEN

IMPORTANCE: Senecavirus A (SVA) is an emerging picornavirus associated with vesicular disease, which wide spreads around the world. It has evolved multiple strategies to evade host immune surveillance. The mechanism and pathogenesis of the virus infection remain unclear. In this study, we show that SERPINB1, a member of the SERPINB family, promotes SVA replication, and regulates both innate immunity and the autophagy pathway. SERPINB1 catalyzes K48-linked polyubiquitination of IκB kinase epsilon (IKBKE) and degrades IKBKE through the proteasome pathway. Inhibition of IKBKE expression by SERPINB1 induces autophagy to decrease type I interferon signaling, and ultimately promotes SVA proliferation. These results provide importantly the theoretical basis of SVA replication and pathogenesis. SERPINB1 could be a potential therapeutic target for the control of viral infection.


Asunto(s)
Quinasa I-kappa B , Picornaviridae , Serpinas , Replicación Viral , Autofagia , Quinasa I-kappa B/genética , Inmunidad Innata , Picornaviridae/fisiología , Transducción de Señal , Serpinas/genética , Interferón Tipo I
3.
PLoS Pathog ; 19(9): e1011641, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708231

RESUMEN

RNA viruses cause numerous infectious diseases in humans and animals. The crosstalk between RNA viruses and the innate DNA sensing pathways attracts increasing attention. Recent studies showed that the cGAS-STING pathway plays an important role in restricting RNA viruses via mitochondria DNA (mtDNA) mediated activation. However, the mechanisms of cGAS mediated innate immune evasion by RNA viruses remain unknown. Here, we report that seneca valley virus (SVV) protease 3C disrupts mtDNA mediated innate immune sensing by cleaving porcine cGAS (pcGAS) in a species-specific manner. Mechanistically, a W/Q motif within the N-terminal domain of pcGAS is a unique cleavage site recognized by SVV 3C. Three conserved catalytic residues of SVV 3C cooperatively contribute to the cleavage of pcGAS, but not human cGAS (hcGAS) or mouse cGAS (mcGAS). Additionally, upon SVV infection and poly(dA:dT) transfection, pcGAS and SVV 3C colocalizes in the cells. Furthermore, SVV 3C disrupts pcGAS-mediated DNA binding, cGAMP synthesis and interferon induction by specifically cleaving pcGAS. This work uncovers a novel mechanism by which the viral protease cleaves the DNA sensor cGAS to evade innate immune response, suggesting a new antiviral approach against picornaviruses.


Asunto(s)
Nucleotidiltransferasas , Péptido Hidrolasas , Picornaviridae , Animales , Humanos , Ratones , ADN Mitocondrial , Endopeptidasas , Mitocondrias , Picornaviridae/fisiología , Porcinos , Nucleotidiltransferasas/metabolismo
4.
J Virol ; 96(24): e0144622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472440

RESUMEN

Seneca Valley virus (SVV), a new pathogen resulting in porcine vesicular disease, is prevalent in pig herds worldwide. Although an understanding of SVV biology pathogenesis is crucial for preventing and controlling this disease, the molecular mechanisms for the entry and post-internalization of SVV, which represent crucial steps in viral infection, are not well characterized. In this study, specific inhibitors, Western blotting, and immunofluorescence detection revealed that SVV entry into PK-15 cells depends on low-pH conditions and dynamin. Furthermore, results showed that caveolae-mediated endocytosis (CavME) contributes crucially to the internalization of SVV, as evidenced by cholesterol depletion, downregulation of caveolin-1 expression by small interfering RNA knockdown, and overexpression of a caveolin-1 dominant negative (caveolin-1-DN) in SVV-infected PK-15 cells. However, SVV entry into PK-15 cells did not depend on clathrin-mediated endocytosis (CME). Furthermore, treatment with specific inhibitors demonstrated that SVV entry into PK-15 cells via macropinocytosis depended on the Na+/H+ exchanger (NHE), p21-activated kinase 1 (Pak1), and actin rearrangement, but not phosphatidylinositol 3-kinase (PI3K). Electron microscopy showed that SVV particles or proteins were localized in CavME and macropinocytosis. Finally, knockdown of GTPase Rab5 and Rab7 by siRNA significantly inhibited SVV replication, as determined by measuring viral genome copy numbers, viral protein expression, and viral titers. In this study, our results demonstrated that SVV utilizes caveolae-mediated endocytosis and macropinocytosis to enter PK-15 cells, dependent on low pH, dynamin, Rab5, and Rab7. IMPORTANCE Entry of virus into cells represents the initiation of a successful infection. As an emerging pathogen of porcine vesicular disease, clarification of the process of SVV entry into cells enables us to better understand the viral life cycle and pathogenesis. In this study, patterns of SVV internalization and key factors required were explored. We demonstrated for the first time that SVV entry into PK-15 cells via caveolae-mediated endocytosis and macropinocytosis requires Rab5 and Rab7 and is independent of clathrin-mediated endocytosis, and that low-pH conditions and dynamin are involved in the process of SVV internalization. This information increases our understanding of the patterns in which all members of the family Picornaviridae enter host cells, and provides new insights for preventing and controlling SVV infection.


Asunto(s)
Caveolina 1 , Dinaminas , Picornaviridae , Internalización del Virus , Proteínas de Unión al GTP rab5 , Animales , Caveolas/metabolismo , Caveolina 1/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitosis , Picornaviridae/fisiología , ARN Interferente Pequeño/genética , Porcinos , Enfermedad Vesicular Porcina , Proteínas de Unión al GTP rab5/metabolismo , Pinocitosis , Línea Celular
5.
J Virol ; 96(17): e0112122, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000840

RESUMEN

Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.


Asunto(s)
Proteasas Virales 3C , Picornaviridae , Proteolisis , ARN Helicasas , Proteasas Virales 3C/metabolismo , Animales , Cromatografía Liquida , Inmunoprecipitación , Picornaviridae/enzimología , Picornaviridae/genética , Picornaviridae/crecimiento & desarrollo , Picornaviridae/fisiología , Unión Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Bicatenario/biosíntesis , ARN Viral/biosíntesis , Porcinos/virología , Enfermedad Vesicular Porcina/virología , Espectrometría de Masas en Tándem , Replicación Viral
6.
Viruses ; 14(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35215935

RESUMEN

Porcine sapelovirus (PSV) is an important emerging pathogen associated with a wide variety of diseases in swine, including acute diarrhoea, respiratory distress, skin lesions, severe neurological disorders, and reproductive failure. Although PSV is widespread, serological assays for field-based epidemiological studies are not yet available. Here, four PSV strains were recovered from diarrheic piglets, and electron microscopy revealed virus particles with a diameter of ~32 nm. Analysis of the entire genome sequence revealed that the genomes of PSV isolates ranged 7569-7572 nucleotides in length. Phylogenetic analysis showed that the isolated viruses were classified together with strains from China. Additionally, monoclonal antibodies for the recombinant PSV-VP1 protein were developed to specifically detect PSV infection in cells, and we demonstrated that isolated PSVs could only replicate in cells of porcine origin. Using recombinant PSV-VP1 protein as the coating antigen, we developed an indirect ELISA for the first time for the detection of PSV antibodies in serum. A total of 516 swine serum samples were tested, and PSV positive rate was 79.3%. The virus isolates, monoclonal antibodies and indirect ELISA developed would be useful for further understanding the pathophysiology of PSV, developing new diagnostic assays, and investigating the epidemiology of the PSV.


Asunto(s)
Infecciones por Picornaviridae/veterinaria , Picornaviridae/genética , Picornaviridae/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , China , Heces/virología , Variación Genética , Genoma Viral , Filogenia , Picornaviridae/clasificación , Picornaviridae/fisiología , Infecciones por Picornaviridae/sangre , Infecciones por Picornaviridae/virología , Porcinos , Enfermedades de los Porcinos/sangre , Replicación Viral , Secuenciación Completa del Genoma
7.
Viruses ; 14(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35062331

RESUMEN

House flies (Musca domestica) are often present in swine farms worldwide. These flies utilize animal secretions and waste as a food source. House flies may harbor and transport microbes and pathogens acting as mechanical vectors for diseases. Senecavirus A (SVA) infection in pigs occurs via oronasal route, and animals shed high virus titers to the environment. Additionally, SVA possesses increased environmental resistance. Due to these reasons, we investigated the tenacity of SVA in house flies. Five groups of flies, each composed of ten females and ten males, were exposed to SVA, titer of 109.3 tissue culture infectious dose (TCID50/mL). Groups of male and female flies were collected at 0, 6, 12, 24, and 48 h post-exposure. For comparison purposes, groups of flies were exposed to Swinepox virus (SwPV). Infectious SVA was identified in all tested groups. Successful isolation of SVA demonstrated the titers varied between 106.8 and 102.8 TCID50/mL in female groups and varied from 105.85 to 103.8 TCID50/mL in male groups. In contrast, infectious SwPV was only detected in the female group at 6 h. The significant SVA infectious titer for prolonged periods of time, up to 48 h, indicates a potential role of flies in SVA transmission.


Asunto(s)
Moscas Domésticas/virología , Picornaviridae/fisiología , Enfermedades de los Porcinos/virología , Animales , Granjas , Femenino , Larva , Masculino , Porcinos , Carga Viral
8.
J Virol ; 96(2): e0155021, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34757844

RESUMEN

Seneca Valley virus (SVV), a member of the Picornaviridae family, can activate autophagy via the PERK and ATF6 unfolded protein response pathways and facilitate viral replication; however, the precise molecular mechanism that regulates SVV-induced autophagy remains unclear. Here, we revealed that SVV infection inhibited the phosphorylation of mechanistic target of rapamycin kinase (MTOR) and activated phosphorylation of the serine/threonine kinase AKT. We observed that activating AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and p38 MAPK signaling by SVV infection promoted autophagy induction and viral replication; additionally, the SVV-induced autophagy was independent of the ULK1 complex. We further evaluated the role of viral protein(s) in the AKT-AMPK-MAPK-MTOR pathway during SVV-induced autophagy and found that VP1 induced autophagy, as evidenced by puncta colocalization with microtubule-associated protein 1 light chain 3 (LC3) in the cytoplasm and enhanced LC3-II levels. This might be associated with the interaction of VP1 with sequestosome 1 and promoting its degradation. In addition, the expression of VP1 enhanced AKT phosphorylation and AMPK phosphorylation, while MTOR phosphorylation was inhibited. These results indicate that VP1 induces autophagy by the AKT-AMPK-MTOR pathway. Additionally, expression of VP3 and 3C was found to activate autophagy induction via the ERK1/2 MAPK-MTOR and p38 MAPK-MTOR pathway. Taken together, our data suggest that SVV-induced autophagy has finely tuned molecular mechanisms in which VP1, VP3, and 3C contribute synergistically to the AKT-AMPK-MAPK-MTOR pathway. IMPORTANCE Autophagy is an essential cellular catabolic process to sustain normal physiological processes that are modulated by a variety of signaling pathways. Invading virus is a stimulus to induce autophagy that regulates viral replication. It has been demonstrated that Seneca Valley virus (SVV) induced autophagy via the PERK and ATF6 unfolded protein response pathways. However, the precise signaling pathway involved in autophagy is still poorly understood. In this study, our results demonstrated that viral proteins VP1, VP3, and 3C contribute synergistically to activation of the AKT-AMPK-MAPK-MTOR signaling pathway for SVV-induced autophagy. These findings reveal systemically the finely tuned molecular mechanism of SVV-induced autophagy, thereby facilitating deeper insight into the development of potential control strategies against SVV infection.


Asunto(s)
Proteasas Virales 3C/metabolismo , Autofagia , Proteínas de la Cápside/metabolismo , Picornaviridae/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Picornaviridae/metabolismo , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/virología , Proteína Sequestosoma-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral
9.
Viruses ; 13(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34834966

RESUMEN

Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine and the only member of the Senecavirus genus. Like in all members of Picornaviridae, the 5' untranslated region (5'UTR) of SVA contains an internal ribosome entry site (IRES) that initiates cap-independent translation. For example, the replacement of the IRES of foot-and-mouth disease virus (FMDV) with its relative bovine rhinitis B virus (BRBV) affects the viral translation efficiency and virulence. Structurally, the IRES from SVA resembles that of hepatitis C virus (HCV), a flavivirus. Given the roles of the IRES in cap-independent translation for picornaviruses, we sought to functionally characterize the IRES of this genus by studying chimeric viruses generated by exchanging the native SVA IRES with that of HCV either entirely or individual domains. First, the results showed that a chimeric SVA virus harboring the IRES from HCV, H-SVA, is viable and replicated normally in rodent-derived BHK-21 cells but displays replication defects in porcine-derived ST cells. In the generation of chimeric viruses in which domain-specific elements from SVA were replaced with those of HCV, we identified an essential role for the stem-loop I element for IRES activity and recombinant virus recovery. Furthermore, a series of stem-loop I mutants allowed us to functionally characterize discrete IRES regions and correlate impaired IRES activities, using reporter systems with our inability to recover recombinant viruses in two different cell types. Interestingly, mutant viruses harboring partially defective IRES were viable. However, no discernable replication differences were observed, relative to the wild-type virus, suggesting the cooperation of additional factors, such as intermolecular viral RNA interactions, act in concert in regulating IRES-dependent translation during infection. Altogether, we found that the stem-loop I of SVA is an essential element for IRES-dependent translation activity and viral replication.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Picornaviridae/genética , Picornaviridae/fisiología , Replicación Viral , Regiones no Traducidas 5' , Animales , Línea Celular , Virus ADN/genética , Virus de la Fiebre Aftosa/genética , Regulación Viral de la Expresión Génica , Hepacivirus/genética , Mutagénesis Sitio-Dirigida , Infecciones por Picornaviridae/virología , ARN Viral/genética , Replicación Viral/genética
10.
Mol Cell Proteomics ; 20: 100147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34530158

RESUMEN

Seneca Valley virus (SVV) or commonly known as senecavirus A, is one of the picornavirus that is associated with vesicular disease and neonatal mortality in swine herds. Our previous study found that SVV replicates extremely faster in porcine Instituto Biologico-Rim Suino-2 (IBRS-2) cells than that in porcine kidney-15 (PK-15) cells. However, the underlying mechanism remains unknown. In this study, we comprehensively compared the expression features between IBRS-2 cells and PK-15 cells in response to SVV infection by an unbiased high-throughput quantitative proteomic analysis. We found that the innate immune response-related pathways were efficiently activated in PK-15 cells but not in IBRS-2 cells during SVV infection. A large amount of interferon (IFN)-stimulated genes were induced in PK-15 cells. In contrast, no IFN-stimulated genes were induced in IBRS-2 cells. Besides, we determined similar results in the two cell lines infected by another porcine picornavirus foot-and-mouth disease virus. Further study demonstrated that the Janus kinase signal transducer and activator of transcription signaling pathway was functioning properly in both IBRS-2 and PK-15 cells. A systematic screening study revealed that the aberrant signal transduction from TANK-binding kinase 1 to IFN regulatory factor 3 in the retinoic acid-inducible gene I-like receptor signaling pathway in IBRS-2 cells was the fundamental cause of the different innate immune response manifestation and different viral replication rate in the two cell lines. Together, our findings determined the different features of IBRS-2 and PK-15 cell lines, which will help for clarification of the pathogenesis of SVV. Besides, identification of the underlying mechanisms will provide new targets and an insight for decreasing the viral clearance rate and probably improve the oncolytic effect by SVV in cancer cells.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Picornaviridae/fisiología , Receptores Inmunológicos/metabolismo , Animales , Línea Celular , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/virología , Transducción de Señal , Porcinos , Replicación Viral
11.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209576

RESUMEN

Neurotropic viruses target the brain and contribute to neurologic diseases. Caspase recruitment domain containing family member 9 (CARD9) controls protective immunity in a variety of infectious disorders. To investigate the effect of CARD9 in neurotropic virus infection, CARD9-/- and corresponding C57BL/6 wild-type control mice were infected with Theiler's murine encephalomyelitis virus (TMEV). Brain tissue was analyzed by histology, immunohistochemistry and molecular analyses, and spleens by flow cytometry. To determine the impact of CARD9 deficiency on T cell responses in vitro, antigen presentation assays were utilized. Genetic ablation of CARD9 enhanced early pro-inflammatory cytokine responses and accelerated infiltration of T and B cells in the brain, together with a transient increase in TMEV-infected cells in the hippocampus. CARD9-/- mice showed an increased loss of neuronal nuclear protein+ mature neurons and doublecortin+ neuronal precursor cells and an increase in ß-amyloid precursor protein+ damaged axons in the hippocampus. No effect of CARD9 deficiency was found on the initiation of CD8+ T cell responses by flow cytometry and co-culture experiments using virus-exposed dendritic cells or microglia-enriched glial cell mixtures, respectively. The present study indicates that CARD9 is dispensable for the initiation of early antiviral responses and TMEV elimination but may contribute to the modulation of neuroinflammation, thereby reducing hippocampal injury following neurotropic virus infection.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/deficiencia , Susceptibilidad a Enfermedades , Encefalitis Viral/etiología , Hipocampo/virología , Infecciones por Picornaviridae/etiología , Picornaviridae/fisiología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Encefalitis Viral/patología , Predisposición Genética a la Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunohistoquímica , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Ratones , Ratones Noqueados , Infecciones por Picornaviridae/patología , Carga Viral
12.
Viruses ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924774

RESUMEN

Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy.


Asunto(s)
Picornaviridae/fisiología , Receptores de Péptidos/química , Receptores de Péptidos/metabolismo , Acoplamiento Viral , Internalización del Virus , Glicosilación , Humanos , Picornaviridae/genética , Receptores de Superficie Celular/metabolismo , Receptores de Péptidos/genética
13.
Vet Microbiol ; 256: 109038, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33845332

RESUMEN

Cholesterol 25-hydroxylase (CH25 H), as a host restriction factor, has been reported to take a broad-spectrum antiviral effect. However, the role of CH25H in Senecavirus A (SVA) infection remains unknown. In this study, we first demonstrate that overexpression of CH25H inhibits SVA replication. Consistently, knockdown or knockout of the endogens CH25H promotes SVA infection. Further, the anti-SVA effect of 25-hydroxycholesterol (25HC), which is the product of CH25H, operates via inhibition of viral attachment and replication. On the other hand, the CH25H mutant (CH25H-M) lacking hydroxylase activity still restricts SVA infection, which can selectively interact and degrade SVA 3A protein via the ubiquitin-proteasome manner. Altogether, these results suggest that CH25H has an antiviral function in SVA infection and provides an alternative manner to control SVA.


Asunto(s)
Infecciones por Picornaviridae/prevención & control , Picornaviridae/fisiología , Esteroide Hidroxilasas/metabolismo , Replicación Viral , Animales , Antivirales , Línea Celular , Cricetinae , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Mutación , Infecciones por Picornaviridae/virología , Esteroide Hidroxilasas/genética
14.
Viruses ; 13(3)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799649

RESUMEN

Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.


Asunto(s)
Picornaviridae/química , Picornaviridae/genética , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Genoma Viral , Humanos , Picornaviridae/clasificación , Picornaviridae/fisiología , Transporte de Proteínas , ARN Viral/genética , Proteínas Virales/clasificación , Proteínas Virales/genética
15.
Vet Microbiol ; 256: 109040, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33812295

RESUMEN

The objective of this study was to evaluate the efficacy of ultraviolet C light (UVC) for inactivating Senecavirus A (SVA) on three different experimentally contaminated surfaces commonly found in swine farms. An experimental study under controlled conditions assessed the effect of UVC on an SVA isolate on coupons composed of three surface types: cardboard, cloth, and plastic. Each coupon was inoculated with 2 mL of SVA (107.5 TCID50/mL) and 1 mL of PBS or 1 g of feces on the top or bottom surface of the coupon and allowed to dry (90 min at 25℃). Coupons were exposed to UVC in a commercially available pass-through chamber (PTC) for 5 min or in a simulated supply entry room (SER) for 120 min. After exposure, virus isolation was attempted from each coupon and virus titers were determined in cell culture. The efficacy of UVC was determined by the reduction in virus titer for the UVC treated groups compared to their respective non-treated positive controls. UVC was effective at inactivating SVA on plastic surface free of organic material. The plastic coupons inoculated with SVA and PBS had a significantly lower virus titer (>7-log reduction) in both the PTC and SER when compared to their relative positive controls. All other groups in the PTC and SER had a 2-log reduction or less. The reduction in virus titer on the top and bottom inoculated surfaces, following exposure to UVC, were not statistically different. The data from this study provide some guidance when applying UVC for disinfection in the field.


Asunto(s)
Desinfección/métodos , Infecciones por Picornaviridae/veterinaria , Picornaviridae/efectos de la radiación , Enfermedades de los Porcinos/prevención & control , Animales , Vestuario , Heces/virología , Papel , Picornaviridae/fisiología , Infecciones por Picornaviridae/prevención & control , Infecciones por Picornaviridae/virología , Plásticos , Porcinos , Enfermedades de los Porcinos/virología , Rayos Ultravioleta
16.
Autophagy ; 17(11): 3763-3775, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33719859

RESUMEN

Macroautophagy/autophagy plays a critical role in antiviral immunity through targeting viruses and initiating host immune responses. The receptor protein, SQSTM1/p62 (sequestosome 1), plays a vital role in selective autophagy. It serves as a receptor targeting ubiquitinated proteins or pathogens to phagophores for degradation. In this study, we explored the reciprocal regulation between selective autophagy receptor SQSTM1 and Seneca Valley virus (SVV). SVV infection induced autophagy. Autophagy promoted SVV infection in pig cells but played opposite functions in human cells. Overexpression of SQSTM1 decreased viral protein production and reduced viral titers. Further study showed that SQSTM1 interacted with SVV VP1 and VP3 independent of its UBA domain. SQSTM1 targeted SVV VP1 and VP3 to phagophores for degradation to inhibit viral replication. To counteract this, SVV evolved strategies to circumvent the host autophagic machinery to promote viral replication. SVV 3Cpro targeted the receptor SQSTM1 for cleavage at glutamic acid 355, glutamine 392, and glutamine 395 and abolished its capacity to mediate selective autophagy. At the same time, the 3Cpro-mediated SQSTM1 cleavage products lost the ability to inhibit viral propagation. Collectively, our results provide evidence for selective autophagy in host against viruses and reveal potential viral strategies to evade autophagic machinery for successful pathogenesis.Abbreviations: Baf.A1: bafilomycin A1; Co-IP: co-immunoprecipitation; hpi: h post-infection; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MOI: multiplicity of infection; PB1: N-terminal Phox/Bem1p; Rap.: rapamycin; Seneca Valley virus: SVV; SQSTM1/p62: sequestosome 1; SQSTM1-N355: residues 1 to 355 of SQSTM1; SQSTM1-C355: residues 355 to 478 of SQSTM1; SQSTM1-N392: residues 1 to 392 of SQSTM1; SQSTM1-C392: residues 392 to 478 of SQSTM1; SQSTM1-N388: residues 1 to 388 of SQSTM1; SQSTM1-N397: residues 1 to 397 of SQSTM1; UBA: ubiquitin association; Ubi: ubiquitin.


Asunto(s)
Autofagia , Picornaviridae/fisiología , Proteína Sequestosoma-1/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Células HEK293 , Humanos , Proteína Sequestosoma-1/fisiología , Especificidad de la Especie , Porcinos , Proteínas Estructurales Virales/fisiología
17.
Vet Microbiol ; 253: 108969, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33450657

RESUMEN

Senecavirus A (SVA), also known as Seneca Valley virus, belongs to the genus Senecavirus in the family Picornaviridae. In this study, a China SVA isolate (CH-LX-01-2016) was rescued from its cDNA clone, and then identified by RT-PCR, indirect immunofluorescence assay and mass spectrometry. The rescued SVA could separately induce typical plaque formations and cytopathic effects in cell monolayers. In order to uncover its evolutionary dynamics, the SVA was subjected to eighty serial passages in vitro. Its progenies per ten passages were analyzed by next-generation sequencing (NGS). The NGS analyses showed that neither sequence-deleting nor -inserting phenotype was detectable in eight progenies, within which a total of forty-one intra-host single-nucleotide variations (SNVs) arose with passaging. Almost all SNVs were identified as the single-nucleotide polymorphism with mixture of two nucleotides. SNVs led to eighteen nonsynonymous mutations, out of which sixteen could directly reflect their own frequencies of amino acid mutation, due to only one SNV occurring in their individual codons. Compared with its parental virus without passaging, the passage-80 SVA progeny had formed a viral quasispecies, as evidenced by a total of twenty-eight SNVs identified in it.


Asunto(s)
Mutación , Picornaviridae/genética , Animales , Línea Celular , Cricetinae , Secuenciación de Nucleótidos de Alto Rendimiento , Riñón/citología , Riñón/virología , Fenotipo , Filogenia , Picornaviridae/clasificación , Picornaviridae/fisiología , Cuasiespecies , Pase Seriado , Porcinos
18.
Virus Res ; 292: 198232, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33207264

RESUMEN

Senecavirus A (SVA), previously known as Seneca Valley virus, is classified into the genus Senecavirus in the family Picornaviridae. SVA is not pathogenic to normal human cells, but has potent oncolytic activity in some tumor cells with neuroendocrine feature, such as small cell lung cancer (SCLC) NCI-H446 cell line. In this study, we rescued and characterized a recombinant SVA that could efficiently express a novel luciferase, NanoLuc® luciferase (NLuc), which was smaller and "brighter" than others. This NLuc-tagged recombinant SVA (rSVA-NLuc) exhibited high capacity for viral replication, but genetic instability of NLuc during serial virus passages. The NLuc as a reporter facilitated oncolytic analysis of rSVA-NLuc in H446 cells. The rSVA-NLuc-infected H446 cells exhibited an oncolytic phenotype characterized by cell rounding, swelling, detachment and lysis at 48 h post infection. Kinetic curve showed that the NLuc was rapidly expressed in H446 cells during an exponential phase of viral growth. Because the NLuc offered several advantages over fluorescent proteins for assay scalability in vivo, the rSVA-NLuc would play a potential role in facilitating in vivo imaging studies of oncolytic virotherapy.


Asunto(s)
Luciferasas/genética , Virus Oncolíticos/genética , Picornaviridae/genética , Línea Celular Tumoral , Expresión Génica , Humanos , Luciferasas/metabolismo , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/fisiología , Picornaviridae/crecimiento & desarrollo , Picornaviridae/fisiología , Replicación Viral
19.
Sci Rep ; 10(1): 20296, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219309

RESUMEN

Bats are natural reservoirs for potential zoonotic viruses. In this study, next-generation sequencing was performed to obtain entire genome sequences of picornavirus from a picornavirus-positive bat feces sample (16BF77) and to explore novel viruses in a pooled bat sample (16BP) from samples collected in South Korea, 2016. Fourteen mammalian viral sequences were identified from 16BF77 and 29 from 16BP, and verified by RT-PCR. The most abundant virus in 16BF77 was picornavirus. Highly variable picornavirus sequences encoding 3Dpol were classified into genera Kobuvirus, Shanbavirus, and an unassigned group within the family Picornaviridae. Amino acid differences between these partial 3Dpol sequences were ≥ 65.7%. Results showed that one bat was co-infected by picornaviruses of more than two genera. Retrovirus, coronavirus, and rotavirus A sequences also were found in the BP sample. The retrovirus and coronavirus genomes were identified in nine and eight bats, respectively. Korean bat retroviruses and coronavirus demonstrated strong genetic relationships with a Chinese bat retrovirus (RfRV) and coronavirus (HKU5-1), respectively. A co-infection was identified in one bat with a retrovirus and a coronavirus. Our results indicate that Korean bats were multiply infected by several mammal viruses.


Asunto(s)
Quirópteros/virología , Heces/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Boca/virología , Virus ARN/genética , Animales , Encéfalo/virología , Coronavirus/clasificación , Coronavirus/genética , Coronavirus/fisiología , Geografía , Interacciones Huésped-Patógeno , Intestinos/virología , Hígado/virología , Pulmón/virología , Filogenia , Picornaviridae/clasificación , Picornaviridae/genética , Picornaviridae/fisiología , Virus ARN/clasificación , Virus ARN/fisiología , República de Corea , Retroviridae/clasificación , Retroviridae/genética , Retroviridae/fisiología , Rotavirus/clasificación , Rotavirus/genética , Rotavirus/fisiología
20.
Sci Rep ; 10(1): 19675, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184473

RESUMEN

Nora virus, a virus of Drosophila, encapsidates one of the largest single-stranded RNA virus genomes known. Its taxonomic affinity is uncertain as it has a picornavirus-like cassette of enzymes for virus replication, but the capsid structure was at the time for genome publication unknown. By solving the structure of the virus, and through sequence comparison, we clear up this taxonomic ambiguity in the invertebrate RNA virosphere. Despite the lack of detectable similarity in the amino acid sequences, the 2.7 Å resolution cryoEM map showed Nora virus to have T = 1 symmetry with the characteristic capsid protein ß-barrels found in all the viruses in the Picornavirales order. Strikingly, α-helical bundles formed from the extended C-termini of capsid protein VP4B and VP4C protrude from the capsid surface. They are similar to signalling molecule folds and implicated in virus entry. Unlike other viruses of Picornavirales, no intra-pentamer stabilizing annulus was seen, instead the intra-pentamer stability comes from the interaction of VP4C and VP4B N-termini. Finally, intertwining of the N-termini of two-fold symmetry-related VP4A capsid proteins and RNA, provides inter-pentamer stability. Based on its distinct structural elements and the genetic distance to other picorna-like viruses we propose that Nora virus, and a small group of related viruses, should have its own family within the order Picornavirales.


Asunto(s)
Cápside/ultraestructura , Picornaviridae/ultraestructura , Receptores Virales/metabolismo , Sitios de Unión , Evolución Biológica , Cápside/metabolismo , Cápside/fisiología , Microscopía por Crioelectrón , Modelos Moleculares , Filogenia , Picornaviridae/clasificación , Picornaviridae/fisiología , Estabilidad Proteica , ARN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...